Sains Malaysiana 52(8)(2023): 2163-2173

http://doi.org/10.17576/jsm-2023-5208-01

 

Oil Based Inactivated Vaccine Formulation for Furunculosis (A. salmonicida) and Protective Immune Response of Rainbow Trout and Brown Trout

(Formulasi Vaksin Tidak Diaktifkan Berasaskan Minyak untuk Furunkulosis (A. salmonicida) dan Tindak Balas Imun Pelindung bagi Trout Pelangi dan Trout Perang)

 

  MUHAMMAD AKRAM1, MUHAMMAD HAFEEZ-UR-REHMAN1,*, FARZANA ABBAS1, IMRAN ALTAF2, SIDRA KANWAL3, KASHIF ALI4, NABILA GULZAR5, MUHAMMAD AJMAL5, MUHAMMAD ASAD4 & JAVAID IQBAL6

  1University of Veterinary and Animal Sciences, Department of Fisheries and Aquaculture, Lahore, Punjab, Pakistan

2University of Veterinary and Animal Sciences, Department of Microbiology, Lahore, Punjab, Pakistan

3Department of Zoology, University of Okara, Pakistan

4Department of Zoology, Univeristy of Okara

5Department of Dairy Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan

6Institute of Zoology, Bahauddin Zakariya University, Multan

Diserahkan: 31 Januari 2023/Diterima: 26 Julai 2023

 

Abstract

The development and growth of the fisheries and aquaculture industries are significantly hampered by illnesses. It is critical to combat pathogenic illnesses, especially bacterial ones. Furunculosis in salmon is mostly brought on by Aeromonas salmonicida in rainbow and brown trout. To control this pathogen, vaccines have been identified as a significant tool. In the present study, we have formulated an inactivated vaccine with oil as an adjuvant and estimated its efficacy. The lethal dose of ArS-Pak-19, was calculated and injected intraperitoneally to the fishes. To analyze the infection, samples of kidney, liver, spleen, and blood were collected at specific times. To estimate the immunogenicity of the vaccine, an experiment was designed. One hundred sixty fishes were distributed into 8 tanks including, six experimental groups and two control groups with its replicates, vaccines injected intraperitoneally 1.6 × 107, 1.6 × 108, and 1.6 × 109 and blood samples were taken fortnightly for 56 days to calculate the antibodies titers. After immunization these groups were challenged with Aeromonas salmonicida (ArS-Pak-19) intraperitoneally. At 7th day of post infection, it appeared in the liver, spleen, and kidney. The relative percentage of survival was estimated with control groups at 30 days after challenge. The relative percentage of survival was 80%. The IgM titers were higher at 24 days of post immunization. We also analyzed that antibodies non-specifically bound with the A-layer of Aeromonas salmonicida. The findings of this study offer evidence that vaccinations boost fishes immunity and serve as a roadmap to further vaccination initiatives.

 

Keywords: Antibodies; IgM titres; immunization; pathogen; pathogenicity

 

Abstrak

Pembangunan dan pertumbuhan industri perikanan dan akuakultur terjejas dengan ketara oleh penyakit. Ia adalah penting untuk memerangi penyakit patogen, terutamanya bakteria. Furunkulosis pada salmon kebanyakannya disebabkan oleh Aeromonas salmonicida pada trout pelangi dan coklat perang. Untuk mengawal patogen ini, vaksin telah dikenal pasti sebagai alat penting. Dalam kajian ini, kami telah merumuskan vaksin yang tidak aktif dengan minyak sebagai pembantu dan menganggarkan keberkesanannya. Dos maut ArS-Pak-19 telah dihitung dan disuntik secara intraperitoneum kepada ikan. Untuk menganalisis jangkitan, sampel buah pinggang, hati, limpa dan darah dikumpulkan pada masa tertentu. Untuk menganggarkan keimunogenan vaksin, satu uji kaji telah direka. Satu ratus enam puluh ikan telah diagihkan ke dalam 8 tangki termasuk, enam kumpulan uji kaji dan dua kumpulan kawalan dengan replikasinya, vaksin yang disuntik secara intraperitoneum 1.6 × 107, 1.6 × 108 dan 1.6 × 109 dan sampel darah diambil dua minggu sekali selama 56 hari untuk menghitung titer antibodi. Selepas imunisasi kumpulan ini dicabar dengan Aeromonas salmonicida (ArS-Pak-19) secara intraperitoneum. Pada hari ke-7 selepas jangkitan, ia muncul di hati, limpa dan buah pinggang. Peratusan relatif kemandirian dianggarkan dengan kumpulan kawalan pada 30 hari selepas cabaran. Peratusan relatif kemandirian ialah 80%. Titer IgM lebih tinggi pada 24 hari selepas imunisasi. Kami juga menganalisis bahawa antibodi tidak terikat secara khusus dengan lapisan-A Aeromonas salmonicida. Penemuan kajian ini menawarkan bukti bahawa vaksinasi meningkatkan imuniti ikan dan berfungsi sebagai peta jalan kepada inisiatif vaksinasi selanjutnya.

 

Kata kunci: Antibodi; titer IgM; imunisasi; patogen; sifat patogen

 

RUJUKAN

Adams, A. & Subasinghe, R. 2019. Use of fish vaccines in aquaculture (including methods of administration). Veterinary Vaccines for Livestock. 1st ed. The Food and Agriculture Organization of the United Nations.

Alonso, M. & Leong, J.A. 2013. Licensed DNA vaccines against infectious hematopoietic necrosis virus (IHNV). Recent Pat DNA Gene Seq. 7(1): 62-65.

Arkoosh, M.R., Dietrich, J.P., Rew, M.B., Olson, W., Young, G. & Goetz, F.W. 2018. Exploring the efficacy of vaccine techniques in juvenile sablefish, Anoplopoma fimbria. Aquac Res. 49(1): 205-216.

Assefa, A. & Abunna, F. 2018. Maintenance of fish health in aquaculture: Review of epidemiological approaches for prevention and control of infectious disease of fish. Vet. Med. Int. 2018: 5432497.

Austin, B. & Austin, D.A. 2016. Aeromonadaceae representative (Aeromonas salmonicida). In Bacterial Fish Pathogens: Disease of Farmed and Wild Fish. Springer, Cham. pp. 215-321.

Austin, B. & Austin, D.A. 2012. Vibrionaceae representatives. In Bacterial Fish Pathogens: Disease of Farmed and Wild Fish. Springer, Dordrecht. pp. 357-411.

Brown, A.B., Whyte, S.K., Braden, L.M., Groman, D.B., Purcell, S.L. & Fast, M.D. 2020. Vaccination strategy is an important determinant in immunological outcome and survival in Arctic charr (Salvelinus alpinus) when challenged with atypical Aeromonas salmonicida. Aquaculture 518: 734838.

Brudeseth, B.E., Wiulsrød, R., Fredriksen, B.N., Lindmo, K., Løkling, K.E., Bordevik, M., Steine, N., Klevan, A. & Gravningen, K. 2013. Status and future perspectives of vaccines for industrialised fin-fish farming. Fish Shellfish Immunol. 35(6): 1759-1768.

Brummett, R. 2014. Introduction, Reducing Disease Risk in Aquaculturee. World Bank Group. pp. 1-9.

Castro, R., Jouneau, L., Pham, H.P., Bouchez, O., Giudicelli, V., Lefranc, M.P., Quillet, E., Benmansour, A., Cazals, F., Six, A. & Fillatreau, S. 2013. Teleost fish mount complex clonal IgM and IgT responses in spleen upon systemic viral infection. PloS Patho. 9(1): e1003098.

Chakraborty, S., Cao, T., Hossain, A., Gnanagobal, H., Vasquez, I., Boyce, D. & Santander, J. 2019. Vibrogen‐2 vaccine trial in lumpfish (Cyclopterus lumpus) against Vibrio anguillarumJournal of Fish Diseases 42(7): 1057-1064.

Chandler, D.E. & Roberson, R.W. 2009. Bioimaging: 2009 Current Concepts in Light and Electron Microscopy. Massachusetts: Jones & Bartlett Publishers.

Cipriano, R.C. & Bullock, G.L. 2001. Furunculosis and Other Diseases Caused by Aeromonas salmonicida. National Fish Health Research Laboratory.

Croisetiere, S., Tarte, P.D., Bernatchez, L. & Belhumeur, P. 2008. Identification of MHC class IIβ resistance/susceptibility alleles to Aeromonas salmonicida in brook charr (Salvelinus fontinalis). Mol. Immunol. 45(11): 3107-3116.

Dallaire-Dufresne, S., Tanaka, K.H., Trudel, M.V., Lafaille, A. & Charette, S.J. 2014. Virulence, genomic features, and plasticity of Aeromonas salmonicida subsp. salmonicida, the causative agent of fish furunculosis. Vet Microbiol. 169(1-2): 1-7.

Elanco Canada Limited, Forte micro, 2020.

Eslamloo, K., Kumar, S., Caballero-Solares, A., Gnanagobal, H., Santander, J. & Rise, M.L. 2020. Profiling the transcriptome response of Atlantic salmon head kidney to formalin-killed Renibacterium salmoninarum. Fish Shellfish Immunol. 98: 937-949.

Fast, M.D., Tse, B., Boyd, J.M. & Johnson, S.C. 2009. Mutations in the Aeromonas salmonicida subsp. salmonicida type III secretion system affect Atlantic salmon leucocyte activation and downstream immune responses. Fish Shellfish Immunol. 27(6): 721-728.

Grontvedt, R.N., Lund, V. & Espelid, S. 2004. Atypical furunculosis in spotted wolffish (Anarhichas minor O.) juveniles: Bath vaccination and challenge. Aquaculture. 232(1-4): 69-80.

Gudding, R. & Goodrich, T. 2014. The history of fish vaccination. Fish Vacc. 12: 1-2.

Gudding, R. & Van Muiswinkel, W.B. 2013. A history of fish vaccination: Science-based disease prevention in aquaculture. Fish Shellfish Immunol. 35(6): 1683-1688.

Hnasko, R. 2015. ELISA, Methods and Protocols. 1st ed. New York. Humana Press. X: 216.

Holten-Andersen, L., Dalsgaard, I. & Buchmann, K. 2012. Baltic salmon, Salmo salar, from Swedish River Lule Älv is more resistant to furunculosis compared to rainbow trout. PLoS ONE 7(1): e29571.

Hordvik, I. 2015. Immunoglobulin isotypes in Atlantic salmon, Salmo salar. Biomolecules 5(1): 166-177.

Janda, J.M. & Abbott, S.L. 2010. The genus Aeromonas: Taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 23(1): 35-73.

Kamil, A., Falk, K., Sharma, A., Raae, A., Berven, F., Koppang, E.O. & Hordvik, I. 2011. A monoclonal antibody distinguishes between two IgM heavy chain isotypes in Atlantic salmon and brown trout: Protein characterization, 3D modeling and epitope mapping. Mol. Immunol. 48(15-16): 1859-1867.

Kjoglum, S., Larsen, S., Bakke, H.G. & Grimholt, U. 2008. The effect of specific MHC class I and class II combinations on resistance to furunculosis in Atlantic salmon (Salmo salar). Scand. J. Immunol. 67: 160-168.

Klesius, P.H. & Pridgeon, J.W. 2014. Vaccination against enteric septicemia of catfish. Fish Vac. 12: 211-225.

Krkosek, M. 2017. Population biology of infectious diseases shared by wild and farmed fish. Can. J. of Fish Aquat. Sci. 74(4): 620-628.

Leboffe, M.J. & Pierce, B.E. 2015. Microbiology: Laboratory Theory and Application. Colorado: Morton Publishing Company.

Lee, K.K. & Ellis, A.E. 1991. The role of the lethal extracellular cytolysin of Aeromonas salmonicida in the pathology of furunculosis. J. Fish Dis. 14(4): 453-460.

Ling, X.D., Dong, W.T., Zhang, Y., Hu, J.J., Liu, J.X. & Zhao, X.X. 2019. A recombinant adenovirus targeting typical Aeromonas salmonicida induces an antibody-mediated adaptive immune response after immunization of rainbow trout. Microbial Patho. 133: 103559.

Long, M., Zhao, J., Li, T., Tafalla, C., Zhang, Q., Wang, X., Gong, X., Shen, Z. & Li, A. 2015. Transcriptomic and proteomic analyses of splenic immune mechanisms of rainbow trout (Oncorhynchus mykiss) infected by Aeromonas salmonicida subsp. salmonicida. J. Proteomics. 122: 41-54.

Lulijwa, R., Alfaro, A.C., Merien, F., Burdass, M., Venter, L. & Young, T. 2019. In vitro immune response of chinook salmon (Oncorhynchus tshawytscha) peripheral blood mononuclear cells stimulated by bacterial lipopolysaccharide. Fish Shellfish Immunol. 94: 190-198.

Magnadottir, B. 2010. Immunological control of fish diseases. Marine Biotechnology 12: 361-379.

Magnadottir, B., Bambir, S.H., Gudmundsdóttir, B.K., Pilström, L.  & Helgason, S. 2002. Atypical Aeromonas salmonicida infection in naturally and experimentally infected cod, Gadus morhua L. J. Fish Dis. 25(10): 583-597.

Mahoney, R.T., Krattiger, A., Clemens, J.D. & Curtiss III, R. 2007. The introduction of new vaccines into developing countries: IV: Global access strategies. Vaccine 25(20): 4003-4011.

Mashoof, S. & Criscitiello, M.F. 2016. Fish immunoglobulins. Biology (Basel) 5(4): 45.

Midtlyng, P.J. 2016. Methods for measuring efficacy, safety and potency of fish vaccines. In Fish Vaccines, edited by Adams, A. Birkhauser Advances in Infectious Diseases. Springer, Basel. pp. 119-141.

Mikkelsen, H., Lund, V., Larsen, R. & Seppola, M. 2011. Vibriosis vaccines based on various sero-subgroups of Vibrio anguillarum O2 induce specific protection in Atlantic cod (Gadus morhua L.) juveniles. Fish Shellfish Immunol. 30(1): 330-339.

Parra, D., Takizawa, F. & Sunyer, J.O. 2013. Evolution of B cell immunity. Annu. Rev. Anim. Biosci. 1(1): 65-97.

Patterson, H., Saralahti, A., Parikka, M., Dramsi, S., Trieu-Cuot, P., Poyart, C. & Rounioja, S. & Rämet, M. 2012. Adult zebrafish model of bacterial meningitis in Streptococcus agalactiae infection. Dev. Comp. Immunol. 38(3): 447-455.

PHARMAQ. Alpha Ject micro 4. 2020. https://www.drugs.com/vet/alpha-ject-micro-4- 562 can.html

Pressley, M.E., Phelan III, P.E., Witten, P.E., Mellon, M.T. & Kim, C.H. 2005. Pathogenesis and inflammatory response to Edwardsiella tarda infection in the zebrafish. Dev Comp Immunol. 29(6): 501-513.

Ramakrishnan, M.A. 2016. Review of the method of “right and wrong cases” (‘constant stimuli’) without Gauss’s formula. World J. Virol. 5(2): 85-86.

Ronneseth, A., Ghebretnsae, D.B., Wergeland, H.I. & Haugland, G.T. 2015. Functional characterization of IgM+ B cells and adaptive immunity in lumpfish (Cyclopterus lumpus L.). Dev. Comp. Immunol. 52(2): 132-143.

Sambrook, J. & Russell, D.W. 2001. Molecular Cloning: A Laboratory Manual. 3rd ed. New York: Cold Spring Harbor Lab. Press. p. 413.

Santander, J., Golden, G., Wanda, S.Y. & Curtiss III, R. 2012. Fur-regulated iron uptake system of Edwardsiella ictaluri and its influence on pathogenesis and immunogenicity in the catfish host. Infec Immun. 80(8): 2689-2703.

Santander, J., Mitra, A. & Curtiss III, R. 2011. Phenotype, virulence and immunogenicity of Edwardsiella ictaluri cyclic adenosine 3′, 5′-monophosphate receptor protein (Crp) mutants in catfish host. Fish Shellfish Immunol. 31(6): 1142-1153.

Shefat, S.H. 2018. Vaccines for infectious bacterial and viral diseases of fish. J. Bacteriol. Infec. 2(2): 1-5.

Shoemaker, C.A., Klesius, P.H., Evans, J.J. & Arias, C.R. 2009. Use of modified live vaccines in aquaculture. J. World Aqua Soc. 40(5): 573-585.

Skugor, S., Jørgensen, S.M., Gjerde, B. & Krasnov, A. 2009. Hepatic gene expression profiling reveals protective responses in Atlantic salmon vaccinated against furunculosis. BMC Genomics 10(1): 1-5.

Sommerset, I., Krossøy, B., Biering, E. & Frost, P. 2005. Vaccines for fish in aquaculture. Exp. Rev. Vac. 4(1): 89-101.

Starliper, C.E. 2011. Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum. J. Adv. Res. 2(2): 97-108.

Sughra, F., Rahman, M., Abbas, F. & Altaf, I. 2021. Evaluation of three alum-precipitated Aeromonas hydrophila vaccines administered to Labeo rohita, Cirrhinus mrigala and Ctenopharyngodon idella: Immunokinetics, immersion challenge and histopathology. Brazilian Journal of Biology 83: e249913.

Sundvold, H., Ruyter, B., Østbye, T.K. & Moen, T. 2010. Identification of a novel allele of peroxisome proliferator-activated receptor gamma (PPARG) and its association with resistance to Aeromonas salmonicida in Atlantic salmon (Salmo salar). Fish Shellfish Immunol. 28(2): 394-400.

Valderrama, K., Soto‐Dávila, M., Segovia, C., Vásquez, I., Dang, M. & Santander, J. 2019. Aeromonas salmonicida infects Atlantic salmon (Salmo salar) erythrocytes. J. Fish Dis. 42(11): 1601-1608.

Watts, J.E., Schreier, H.J., Lanska, L. & Hale, M.S. 2017. The rising tide of antimicrobial resistance in aquaculture: Sources, sinks and solutions. Mar Drugs. 15(6): 158.

Yang, B., Duan, H., Cao, W., Guo, Y., Liu, Y., Sun, L., Zhang, J., Sun, Y. & Ma, Y. 2019. Xp11 translocation renal cell carcinoma and clear cell renal cell carcinoma with TFE3 strong positive immunostaining: Morphology, immunohistochemistry, and FISH analysis. Modern Pathology 32(10): 1521-1535.

Yin, X., Mu, L., Fu, S., Wu, L., Han, K., Wu, H., Bian, X., Wei, X., Guo, Z., Wang, A.  & Ye, J. 2019. Expression and characterization of Nile tilapia (Oreochromis niloticus) secretory and membrane-bound IgM in response to bacterial infection. Aquaculture 508: 214-222.

Zhang, Z., Niu, C., Storset, A., Bøgwald, J. & Dalmo, R.A. 2011. Comparison of Aeromonas salmonicida resistant and susceptible salmon families: A high immune response is beneficial for the survival against Aeromonas salmonicida challenge. Fish Shellfish Immunol. 31(1): 1-9.

*Pengarang untuk surat-menyurat; email: mhafeezurehman@uvas.edu.pk